1. Find the two numbers which multiply together to make 30 and add together to make 17.
2. Write numbers in the boxes below to make the statement true.

$$
15 \times 20=5 \times \square=6 \times \square
$$

3. Peter says

The sum of an odd number and an even number is even.

The example $3+4=7$ shows that Peter is not correct.

Write an example to show that this statement is not correct.

Squaring a whole number always results in an even number.
4. The product of three numbers is 312 .

Two of the numbers are 3 and 13 .

What is the third number?

5(a). Work out.

926-382
(b). $517 \times 16$
6. Choose from this list

| 17 | 18 | 25 | 28 | 39 | 72 |
| :--- | :--- | :--- | :--- | :--- | :--- |

two numbers with a difference of 14 ,
and $\qquad$
7. Two numbers have a sum of 4 and a difference of 18 . One of the numbers is positive and the other is negative.

Find the two numbers.
and $\qquad$

8(a). Sam has these number cards.


Complete the following problems using Sam's number cards.

$$
7 \times \square=42
$$

(b).

$$
3-\square=-2
$$

(c).

(d).

$$
54+\square=80
$$

9(a). Work out.

$$
872+236
$$

(6)
(b). $629-447$
(c). $254 \times 32$
$41+\square=100$

$$
100-\square=72
$$

$$
7 \times 9=\square
$$

$$
54 \div 9=\square
$$

11. Complete the following statements.
${ }_{(i)} 6-\square=-2$
(ii) $-3-\square=8$
12. Sukrit and Anna are playing a game called 'Make 100'.

Sukrit says a 2-digit number.
Anna says the number that has to be added to this to make 100 .

For example, if Sukrit says 60 , Anna says 40 as $60+40=100$.

Complete these two games.

Sukrit says 36, Anna says $\qquad$

Sukrit says 81, Anna says $\qquad$
13. Work out.
(i) $8 \div 100$
$\qquad$
(i)
(ii) $\frac{8+9}{-2}$
(ii)
(iii) $4+8 \times 3$
$\qquad$

| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 2 and 15 | 2 | Mark final answer M1 for a pair as final answer that either multiplies together to 30 or adds to 17 <br> Examiner's Comments <br> Was well attempted by most candidates with many correct answers. Those who did not earn 2 marks usually scored the part mark for a pair of values which multiply together to make 30 , usually 3 and 10 or 5 and 6. | For M1, accept nonintegers or negatives |
|  |  | Total | 2 |  |  |
| 2 |  | $60 \quad 50$ | 2 | B1 for each |  |
|  |  | Total | 2 |  |  |
| 3 |  | An odd integer squared with correct result | 1 | e.g. $5^{2}=25$ |  |
|  |  | Total | 1 |  |  |
| 4 |  | 8 | 3 | M1 for dividing by 3 or 13 M1 for dividing by remaining factor | M1 for multiplying 3 by 13 M1 for dividing by 39 or listing multiples of 39 |
|  |  | Total | 3 |  |  |
| 5 | a | 544 | 1 |  |  |
|  | b | 8272 | 2 | M1 for full correct method with one arithmetic mistake |  |
|  |  | Total | 3 |  |  |
| 6 |  | 39 and 25 | 1 | Accept in either order <br> Examiner's Comments <br> This question was well answered with the majority of candidates giving the correct value. |  |


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |  |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| 7 |  |  | Total | 1 |  | B1 for a pos and neg value <br> with a sum of 4 or a <br> difference of 18 |


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | a | 6 | 1 | Examiner's Comments <br> Very well answered. |  |
|  | b | 5 | 1 | Examiner's Comments <br> This proved difficult for some with a common error of 1 sometimes given. |  |
|  | c | 3 and 5 and 6 or 3 and 6 and 5 or 1 and 2 and 5 or 1 and 5 and 2 | 2 | B1 for a correct multiplication shown in working eg $5 \times 2=10$ <br> Examiner's Comments <br> Answers were more varied, there were several correct options for candidates to choose and many were successful. A number invented their own cards however in this part and gave a calculation than worked, but not with the cards provided. | Allow B1 for a correct answer using their cards |
|  | d | 26 | 1 | Examiner's Comments <br> Very well answered. |  |
|  |  | Total | 5 |  |  |


| Question |  | Answer/Indicative content | Marks | Part marks and guidance |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | a | 1108 | 1 | Examiner's Comments <br> This was usually answered correctly especially by the majority who used the column method for addition. |  |
|  | b | 182 | 1 | Examiner's Comments <br> Weaker candidates often failed to cope with the need to "borrow" and simply subtracted the smaller digits from the larger digits to arrive at 222. |  |
|  | c | 8128 | 3 | 3M2 for any complete method with 1 arithmetic error or M1 for any complete method with 2 arithmetic errors <br> Examiner's Comments <br> This part was answered using many different methods other than the traditional long multiplication (including Napier's Bones and various different applications of a grid method). It has to be said that these "newer" methods are relatively successful although many marks were lost through errors in the simple arithmetic required to complete the grids or through a failure to sum the various components correctly. | Do not condone conceptual errors |
|  |  | Total | 5 |  |  |




